Prof. Ming-Hsiang Su | Signal Processing | Best Researcher Award
Prof. Ming-Hsiang Su | Soochow University | Taiwan
Prof. Ming-Hsiang Su is a prominent researcher and assistant professor specializing in the fields of deep learning, natural language processing, and speech signal processing, with a particular focus on spoken dialogue systems, emotion recognition, and personality trait perception. His work integrates advanced computational techniques with real-world applications, developing intelligent systems capable of understanding, interpreting, and generating human-like speech and dialogue. Prof. Ming-Hsiang Su has contributed to the advancement of speech emotion recognition by considering both verbal and nonverbal vocal cues, and has designed sophisticated models for empathetic dialogue generation, text-to-motion transformation, and mood disorder detection through audiovisual signals. He has published extensively in high-impact journals and conferences, addressing topics such as few-shot image segmentation, sound source separation, automatic ontology population, and speaker identification. His research also extends to applied systems, including automated crop disease detection, question-answering systems, and industrial defect detection using deep learning architectures. By combining theoretical insights with practical implementations, Prof. Ming-Hsiang Su work bridges the gap between computational intelligence and human-centered applications, enhancing machine understanding of complex speech, language, and affective behaviors. Through his interdisciplinary approach, he continues to advance innovative methods for human-computer interaction, intelligent dialogue systems, and multimodal data analysis, establishing a significant impact on both academic research and practical technological applications across various domains, with 791 citations by 684 documents, 83 documents, and an h-index of 15.
Profiles: Scopus | Orcid | Google Scholar
Featured Publications
Huang, K. Y., Wu, C. H., Hong, Q. B., Su, M. H., & Chen, Y. H. (2019). Speech emotion recognition using deep neural network considering verbal and nonverbal speech sounds. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech, and …, 138.
Su, M. H., Wu, C. H., Huang, K. Y., Hong, Q. B., & Wang, H. M. (2017). A chatbot using LSTM-based multi-layer embedding for elderly care. 2017 International Conference on Orange Technologies (ICOT), 70-74.
Hsu, J. H., Su, M. H., Wu, C. H., & Chen, Y. H. (2021). Speech emotion recognition considering nonverbal vocalization in affective conversations. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 1675-1686.
Su, M. H., Wu, C. H., & Cheng, H. T. (2020). A two-stage transformer-based approach for variable-length abstractive summarization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 2061-2072.
Su, M. H., Wu, C. H., Huang, K. Y., & Hong, Q. B. (2018). LSTM-based text emotion recognition using semantic and emotional word vectors. 2018 First Asian Conference on Affective Computing and Intelligent …, 78.